
26 The Delphi Magazine Issue 63

BorDebug: Return Of The Giant
Making sense of TD32 debug information
by Hallvard Vassbotn

The Delphi linker has always
had the option of including

so-called Turbo Debugger (TD32)
debug information (on the Linker
page of the Project Options
dialog). The internal IDE Debugger
does not normally use this infor-
mation (Delphi 4 and 5 use it when
debugging external DLLs and EXE
files), but instead relies on internal
compiler structures built during an
interactive compile.

External tools, such as Borland’s
Turbo Debugger1, do rely on the
TD32 information tacked on at the
end of the EXE or DLL file to enable
symbolic debugging. This informa-
tion is also used by a number of
third party tools, such as
Numega’s BoundsChecker2, Turbo-
Power’s suite of Sleuth QA3 tools,
Atanas Stoyanov’s freeware
MemProof memory checking tool4,
AutomatedQA’s QTime profiler5

and Intel’s VTune sampling
profiler6.

In this article we will see how we
can utilise a relatively new DLL
from Borland, BorDebug.DLL, to
read and interpret the TD32 debug
information in our own applica-
tions. This can be used for a
number of purposes, although it
will be most useful for debuggers
and other low-level tools. We will
discuss the functionality provided
by the BorDebug DLL, present an
import unit that gives us access to
it from our Delphi applications,
look at a set of wrapper classes to
simplify the usage and show some
simple demonstration programs.

History
Traditionally, it has been very hard
to get information on the internal
structure of the TD32 format. For
many years, it was totally undocu-
mented, not even mentioned in
places like Wotsit7. There might
have been a number of reasons for
this: perhaps Borland wanted to
protect their own standalone

Turbo Debugger from the competi-
tion, for example. In any case, this
was a major obstacle for people
who wanted to develop support for
Delphi modules in tools such
as debuggers, code analysers,
profilers, memory checkers and so
on. In contrast, Microsoft have
openly documented their own
debugging format and even imple-
mented access routines in the
IMAGEHLP.DLL (see the Delphi
import unit in Source\Rtl\Win\
ImageHlp.Pas).

I know that a number of people
have been forced to reverse engi-
neer at least parts of the TD32
format to implement their tools.
This includes first-rate guys such
as Per Larsen of TurboPower
(Memory Sleuth, Sleuth QA),
Atanas Stoyanov of MemProof and
QTime fame, and Stefan
Hoffmeister8, hacker extra-
ordinaire and more recently a
Borland employee. After a long
period of lobbying Borland, they
finally released a long and detailed
document to people that specifi-
cally requested it in a file called
Giant.Txt. I got my copy from Char-
lie Calvert in the middle of 1998. I
later found that mostly the same
information had been released in
1993 as part of a product called
Borland Open Architecture Hand-
book for BC 4.0 (in a file named
BC32.TXT).

Internally, the TD32 format is
known as the Giant format, pre-
sumably because it can handle
larger amounts of information than
the older 16-bit format used in the
old Turbo/Borland Pascal compil-
ers. Some might say it got its name
because it makes your EXE files
giant-sized �.

The release of this document
was literally a giant step in the right
direction. However, the informa-
tion in the document was very
terse, contained no example code
and not even C structs defining the

structure of the information. It
would still require hours and
hours of studying, trial and error
to turn the document into working
code that could read the TD32
debug information from a given
EXE file.

Then, in March 1999, Borland’s
Keimpe Bronkhorst contacted a
number of interested people,
including myself, asking us if we
were willing to informally test this
new DLL they were developing.
The DLL, called BorDebug.DLL,
would give relatively easy, albeit
low-level, access to TD32 informa-
tion in any executable module.
This was what we had been waiting
for! A private mailing list was
established and we set out to test
and start using this new DLL. Ini-
tially, the only interface was
through a C header file, but I took
on the task of converting it to a
Delphi import unit. The result is
the BorDebug.Pas unit presented
in this article.

In fact, I started writing this arti-
cle about a year ago, trying to get it
published in the August 1999
‘Gold’ issue of The Delphi Maga-
zine. However, at that time,
Borland was not ready to publish
the BorDebug.DLL, so the article
was put on hold, and I had to write
a new one9 in a hurry to fill the
reserved pages! Then, in March
2000, Borland’s John Thomas
released the BorDebug.DLL in a
CodeCentral submission10. Now
the DLL is freely available, I can
finally finish off this article. Phew!

Project settings
There are a number of compiler
and linker options which can be
set in the IDE, the DCC32.CFG file,
or on the DCC32 command line,
that influence the level of detail of
the debug information included.
Bring up the Project Options
dialog and select the Compiler
page, see Figure 1.

November 2000 The Delphi Magazine 27

Although they are not strictly
debug options, the code genera-
tion option settings can greatly
influence how easy it is to debug
the resulting code. Turning off
Optimization ($O-) makes it easier
to follow the code (particularly in
the CPU View) and to examine vari-
able contents in after-the-fact situ-
ations. Turning on Stack frames
($W+) can help the IDE and external
tools to find correct return address
and parameter information from
the stack, helping you show how
you ended up in the current
routine.

There are also a number of
debugging settings. The Debug
information setting ($D+) is a
master setting, determining if the
compiled DCU file contains any
debug information or not. Local
symbols ($L+) turns on information
for local variables within routines
and symbols only visible in the
implementation part of the unit.

Reference info ($Y+) and the
related Definitions only ($YD) set-
tings affect the level of information
available to the browser windows
in the IDE. These settings include
extra information about where
symbols were declared and refer-
enced. The BorDebug API has not
implemented access to this infor-
mation in the current version. To
get at it, you would have to glean
the information yourself.

Assertions ($C+) include the
code for any Assert calls in the
compiled code, this is a very useful
technique for catching problems
early. Finally, the Use Debug DCUs
setting instructs the linker to use
the debug version of the RTL and
VCL pre-compiled DCUs (in your
Delphi\Lib\Debug directory). This
can make it easier to track prob-
lems that interact closely with the
RTL and VCL. Note that this is
really a linker setting, although it
appears in the Compiler page.
Unless you plan to distribute your
DCU files (for a shareware product,
for instance), you probably want to
keep both Debug information and
Local symbolschecked at all times.

Next, select the Linker page of
the Project Options dialog.
Normally all the DCUs of your pro-
ject contain full debug information.
That debug information can be
included in the final executable file
by checking the Include TD32 debug
info setting. The /V option of
the command line compiler
(DCC32.EXE) has the same effect.
The BorDebug.DLL, and thus all
the example code presented in this
article, presume that the EXE files
have been compiled with this set-
ting. Note that this will typically
increase the size of your execut-
able considerably. You probably
don’t want to ship with debug
information to your clients. Also,
there is a tool shipped with
C++Builder called TDStrp32.EXE11

that can take an EXE file with debug

information and strip the debug
info out to a separate .TDS file. This
way you don’t have to recompile
the executable and most tools will
still be able to load the debug infor-
mation from the .TDS file.

The Linker page also contains
options to generate a text .MAP
file. The generated file contains
most of the debug information that
will be linked into the executable
when you select the Detailed
option. However, it does not con-
tain information about parameters
or local variables. Some tools
(such as HVEST9) that don’t know
how to deal with the native TD32
format use this .MAP file instead.

Files
Included on the disk you will find
BorDebug.DLL and the original C
header file, BorDebug.h. The
header file contains additional
information on how to use each
API call. I decided not to duplicate
this documentation in the Delphi
import file, BorDebug.Pas (it
would be too much extra work to
keep the two files in sync with each
other). So if you need documenta-
tion for a certain BorDebug API
call, search for the name in
BorDebug.h. I will include the most
relevant information and a higher-
level overview in this article.

BorDebug Concepts
To get a proper understanding of
the TD32 format and the BorDebug
API, we must first establish the

➤ Above: Figure 1

➤ Right: Figure 2

28 The Delphi Magazine Issue 63

definition of some basic concepts
and relate those concepts to what
we know as Delphi developers.

They say an image is worth more
than a thousand words, so to keep
this article short (�), I’ve included
an overview image of how the
Pascal, DCU and EXE-files are
related with the different types of
debug information in Figure 3.

This figure is most easily inter-
preted from the right to the left. At
the bottom left, we have the source
files for two units in the project,
Unit1 and Unit2. Unit1 is a plain,
single file, unit, while Unit2 con-
sists of an include file and an
assembly file in addition to the
mandatory Pascal source file. A
standalone assembler (such as
TASM12) is used to turn the .ASM
file into an .OBJ file. This OBJ file is
sucked into the generated .DCU file
by using the $L directive. From a
debug info point of view, all we will
see is that the unit has three source
files contributing to its contents:
Unit2.Pas, Unit2.Inc and Core.ASM.

We compile the source files and,
provided we have used the right
settings ($D+,L+), the generated
.DCU files have debug info tacked
onto the end. You can see that the

orange and green DCU files both
have a grey box representing the
debug information for each unit.
The red System.DCU unit at the
top doesn’t contain any source-
level debug information, so we will
not be able to single step into it.

Because the Delphi compiler and
linker are so fast, and there is no
simple way to just compile the
units without linking the final
executable, many Delphi develop-
ers are unaware that there is a
separate link step. The linker takes
the generated .DCU files, does
some magic, and then constructs a
new .EXE file. The yellow and cyan
areas in the figure represent
the code and data segments
respectively.

As you can see, in this example
all three units have both code and
data (shown as red, orange and
green boxes inside the .EXE file).
There is also a segment for
uninitialized global variables, but
these don’t show up in the .EXE file
(other than the size field in the PE
header). It turns out that all Pascal
units always contribute to the code
and uninitialized data segment,
even though they don’t declare any
explicit code or variables. This
means that a unit containing only
constants or simple types still

takes up some code and data
space. The reason for this is the
automatically generated initializa-
tion and finalization code and the
global counter variable this code
uses (see an earlier article13 for
more details).

If the /V option is turned on
(Include TD32 debug info), the
linker aggregates the debug infor-
mation it finds in the .DCU files and
adds it to the end of the .EXE file
(represented by the grey box).
Because the System.DCU file does
not have any debug information in
it, the linker only generates one
Module section and one AlignSym
section for it (the two red boxes
inside the grey debug info box).

On the other hand, both the
Unit1 and Unit2 units were
compiled with debug information,
and thus they both get SrcModule
sections in addition to the manda-
tory Module and AlignSym sections
(the orange and green boxes).

Now we have a complete .EXE
file with TD32 info attached. It will
run like a normal .EXE file, taking
no extra memory at runtime,
because the OS loader will simply
ignore the debug information.
However, when we load the .EXE
into a TD32-aware tool, the
BorDebug.DLL (or corresponding

Module
ModuleIndex
Name
Segments

Segment
LinkerSegment,
Offset, Size
Flags

ScrModule
ModuleIndex
Ranges
SourceFiles

ScrModRange
Segment
Start EndOffset

SourceFile
Name
Ranges

SourceFileRange
Segment
Start-EndOffset
LineNumberOffsets

AlignSym
ModuleIndex
SymbolInfos
(StartSymbols
NextSymbol)

SymbolInfo
Name, Kind
Info, TypeInfo

TypeInfo
Name
TypeKind, Info

EXE-file
PE-Header

Code

Initialized Data

Debug-info

Module

Module

Module

SrcModule

AlignSym

AlignSym

AlignSym
SrcModule

Names
Types

Browse-info

Linker
System DCU

Unit1.DCU
Debug-info

Unit2.DCU
Debug-info

Unit1.Pas

Unit2.Pas
Unit2.Inc
Core.ASM

Compiler

{$D+,L+}

➤ Figure 3

30 The Delphi Magazine Issue 63

custom code) will be able to find
the debug information.

Finally, the white boxes at the
left of the figure give more details
about what kind of information the
debug sections contain. It will be
useful to refer to these while I
explain the structure of the TD32
information.

Gigantic Structure
As I have already discussed, the
TD32 debug information can be
tacked on to the end of the execut-
able file, or it can be placed in a sep-
arate .TDS file. To be able to read
the debug information, we must of
course tell BorDebug where to find
it. We do this by calling the
BorDebugRegisterFile function. If it
succeeds, this returns a handle
that we must use in all subsequent
calls to the BorDebug routines.
When we are done, we call the
BorDebugUnregisterFile API to
close the file and release any asso-
ciated resources. From the highest
level point of view, the TD32 infor-
mation just consists of a number of
subsections.

SubSections
Subsections are a way to divide the
debug information into logical
chunks. They don’t carry much
information in themselves, but act
as headers for the specific
subsection types (see below).

Each subsection has an associ-
ated sequential module index,
starting at 1. A module section,

source module section and symbol
section, that have the same
module index number, belong
together logically: they all derive
from the same unit. The Offset and
Size fields are low-level and tell us
where in the .EXE file the debug
information section can be found.

We use the BorDebugSubSection-
Count routine to get the number of
sections in the .EXE file and
BorDebugSubSection to read the
fields for each section.

Subsection Types
Each TD32 subsection contains a
different type of information. The
BorDebug defines eight different
constants with a BORDEBUG_SST
prefix to designate the subsection
types: see Table 1.

According to the documentation
in BorDebug.h and Giant.Txt, the
AlignSym section is reserved for
symbols defined in the implemen-
tation section or in a local scope
(ie, local variables). However, I
have found that this is not the case.
In practice, AlignSym is the same as
GlobalSym and GlobalPub. In fact,
during my testing I have only
encountered AlignSym sections.
You have to examine each symbol
inside the section to determine if it
has a global or local scope. We will
refer to all these three section
types as Symbol sections.

This simplifies things a little, as
we are only left with six different
subsection types to worry about.
Throw in the fact that the Browse
section is not currently supported
by BorDebug and we are left with

five: Modules, SrcModules, Symbols,
Types and Names. The first three are
all associated with a specific
module (ie a DCU unit). The last
two contain information on all
global types and all name strings.
Typically, we obtain indices
obtained from the first three sec-
tions (modules, source modules
and symbols) and lookup the name
string or type information directly
from the index.

Modules
In BorDebug-speak, a Module is an
entity that contributes code
and/or data to the final executable.
Examples of this are DCU and OBJ
files. Even if you don’t have the
source code for a DCU or OBJ file,
the public information needed for
linking is added to a Module section
in the final debug information.
Each module has a name index and
we can use this to look up the name
of the DCU file. The module gets its
module index from the subsection
header. It also has a segment
count, and we can retrieve infor-
mation about each module
segment.

A module can contribute code or
data to one or more segments.
Typically, each module always
states that it contributes to three
segments: the code segment, the
initialized data segment (for typed
constants and initialized global
variables) and the uninitialized
data segment (for other global
variables). For some segments, the
size can be 0 (if there are no initial-
ized global variables in a unit, for
instance).

When the subsection type is
BORDEBUG_SSTMODULE, you can read
the module information with the
BorDebugModule function.

Segments
Each module typically contributes
to three segments. Each segment
maintains information about the
corresponding logical segment
index used by the linker (typically
0 for code, 1 for initialized data and
2 for uninitialized data), the offset
in the segment, the size and code
or data flags. We can use the
BorDebugModuleSegment API to read
this information.

BorDebug_sstxxx Explanation

MODULE Code and data from one OBJ or DCU file

ALIGNSYM Symbols belonging to a local block

SRCMODULE Code from a single source file (.PAS unit)

GLOBALSYM Globally available symbols (variables, routines, etc)

GLOBALPUB Same as GlobalSym

GLOBALTYPES Globally available type definitions

NAMES Mapping from name- and type-indices to name strings

BROWSE Browsing information (declaration and usage points)

➤ Table 1

November 2000 The Delphi Magazine 31

Source Modules
A source module corresponds to
the concept of a Pascal source unit
with all its include files and any
assembly files. The source module
inherits its module index from the
corresponding section header.
This number can be used to associ-
ate the source module with the
DCU file it generated (ie, the Module
section) and the symbols it con-
tains (in the Symbol section). Fur-
ther, each source module contains
a number of ranges and one or
more source files (more about this
below).

When the subsection type is
BORDEBUG_SSTSRCMODULE, we can
read the basic source module
information using the BorDebug-
SrcModule function.

Source Module Ranges
A source module will contain one
or more ranges. Each of these
ranges is a combination of a seg-
ment index, a starting offset and an
ending offset. This encodes infor-
mation about where the source
module contributes code and data.
The source module ranges are read
in using the BorDebugSrcModule-
Ranges routine.

Source Files
Each source module will also con-
tain one or more source file entries
(one for the main .Pas file and one
for each include or assembly file
used). Each source file entry has a
sequential index, a name and a
number of source file ranges asso-
ciated with it (more of below). The
BorDebugSrcModuleSources function
reads in the information for a
single source file entry.

Source File Ranges
As mentioned, each source file
entry maintains information about
the ranges where they contribute
code or data (a segment index, plus
starting and ending offsets). These
are read using BorDebugSrcModule-
SourceRanges. Finally, each source
file range also contains mapping of
line number and address informa-
tion, see below. Normally, each
source file has only a single range
defined for it (during my testing,
System.Pas had three ranges and

SysUtils.pas had two, all other
units had one range).

Line Numbers
The mapping of addresses to unit
line numbers and vice versa is a
very important part of the debug
information. Each source file range
can have an array of line number
and code-offset mappings. These
are read using the BorDebugSrc-
ModuleLineNumbers routine.

Symbols
There are three subsection types
that logically map to the same
information: AlignSym, GlobalSym
and GlobalPub. We just refer to all of
these as Symbol subsections. Just
as we have seen for Module and
Source Module sections, a Symbol
section inherits its module index
from the corresponding section
header. This allows us to easily
map the symbol information to the
module (.DCU file) and source
module (.Pas file) it belongs to.

Because there are typically a
large number of symbols associ-
ated with a module, there is no
direct, index-based, method of
reading them. Instead, we must
iterate over all of them, one by one.
Each symbol contains a fixed
common header. This includes a
symbol kind, offset and length (in
the debug information). Then
there is information specific to
each kind of symbol. This often
includes the name and a type index
(more on this below), what seg-
ment (code or data) it belongs to,
the offset where the information
begins (inside the code or data seg-
ment), and so on.

When the subsection type is
BORDEBUG_SSTALIGNSYM, BORDEBUG_
SSTGLOBALSYM or BORDEBUG_SSTGLOB-
ALPUB, we can start to iterate over
the symbols using the BorDebug-
StartSymbols routine. Then we
read the common symbol header
using the BorDebugNextSymbol func-
tion. Finally, we check the symbol
kind field and call the correspond-
ing BorDebugSymbolXXX routine to
get the specific information.

Types
As mentioned above, many sym-
bols will have an associated type

index. This represents the type of
the symbol (duh!). More interest-
ingly, we can use this type index to
look up more detailed, logical
information about the type. It is
also possible to simply get a string
representation of the type.

All types have a fixed, common
header (sounds familiar?). This
header includes the type index, a
type kind, an offset and a length (in
the debug info). Information spe-
cific to each type usually contains
the name, but is otherwise very
diverse. For instance, an array
type contains information about
the type of the elements and index
(ie, a recursive type index), the
name of the type, the total size of
the array and the number of ele-
ments in the array.

With a type index in hand, we
can get a string representation
from the BorDebugTypeIndexTo-
String procedure. If we are inter-
ested in the finer details, we first
read the common type header
using the BorDebugTypeFromIndex
routine. Then we check the type
kind field and call the correspond-
ing BorDebugTypeXXX routine to get
the specific information. If this
contains further type indices, we
continue this process recursively.

Names
When we retrieve information
about an item that has a name (a
module, source file, symbol, type,
etc), we always get just a numeric
name index. This name index isn’t
very useful by itself, so we can use
it to look up the actual name string
in the names section.

In the debug information, the
names section is just a large block
of length byte prefixed and zero-
terminated strings. There is no
explicit name index encoded into
the .EXE file, so this must be
computed at runtime.

The BorDebugRegisterFile rou-
tine can do this for you and it takes
two Boolean parameters to decide
how it should deal with this sub-
section. If the SkipNames parameter
is True, BorDebug ignores the names
section altogether and you cannot
call any of the name-related APIs
below. If SkipNames is False, the
parameter CacheNames acts as a

32 The Delphi Magazine Issue 63

‘quick but memory consuming’
versus a ‘slow but memory lean’
toggle. Normally you will set these
parameters to False and True,
respectively.

The following BorDebug routines
can be used to read the name
section: BorDebugNamesTotalNames
returns the total number of name
strings. BorDebugNameIndexToName
returns the string associated with
a specific name index. Alterna-
tively, we can call BorDebugName-
IndexToUnmangledName to get an
unmangled version of the name.
Name mangling is the process of
encoding parameter and calling
convention information in the
linker name of a routine. This pro-
cess can make the information
nearly unreadable. Finally
BorDebugRegIndexToName converts a
register index into the string repre-
sentation of the register (eg, EAX,
EBX etc).

Browse information
The TD32 information can option-
ally contain information to help
browsing tools. The Browse section
encodes information such as
where a symbol or type was
defined and where it was used. The
current version of the BorDebug API
does not have any direct support
for reading this information. There
is an undocumented routine called
BorDebugDumpBrowserInfo, but it
seems like it is not implemented. If
you want to read and interpret this
information, you would have to
start with the offset and size infor-
mation for the BORDEBUG_SSTBROWSE
sub-section. After this you are
basically on your own.

Information from the Giant.Txt
file (dated March 1999) even indi-
cates that browser information is
not included in the TD32 info at all:
‘Note: There are several fields in
the symbol structures which refer
to browser information. These
fields are set to 0 by the current

Win32 compiler and linker. Cur-
rently only the OS/2 version of
BC++ supports this browser infor-
mation. Therefore it is not docu-
mented here.’

The Raw BorDebug API
OK, with all that background infor-
mation under our belts, we are
ready to dive into the nitty-gritty
details of how to use BorDebug.
The DLL exports a number of API
routines, listed out for you in List-
ing 1. Note that all the parameters
and return types have been
stripped from this listing to keep
the size down: see the disk for the
complete version.

I will not discuss each and every
BorDebug routine available with
all their parameters and their
meaning. If I did, the article would
probably fill this entire issue and I
would only be repeating much of
the information found in the
BorDebug.h file. Instead, I will
discuss the general structure of

// General routines
function BorDebugRegisterFile;
procedure BorDebugUnregisterFile;
function BorDebugSubSectionDirOffset;
function BorDebugSubSectionCount;
procedure BorDebugSubSection;
procedure BorDebugModule;
procedure BorDebugModuleSegment;
procedure BorDebugStartSymbols;
procedure BorDebugNextSymbol;
procedure BorDebugDumpBrowserInfo;
// SymbolXXXX routines:
procedure BorDebugSymbolCOMPILE;
procedure BorDebugSymbolREGISTER;
procedure BorDebugSymbolCONST;
procedure BorDebugSymbolUDT;
procedure BorDebugSymbolSSEARCH;
procedure BorDebugSymbolOBJNAME;
procedure BorDebugSymbolGPROCREF;
procedure BorDebugSymbolGDATAREF;
procedure BorDebugSymbolEDATA;
procedure BorDebugSymbolEPROC;
function BorDebugSymbolUSES;
function BorDebugSymbolNAMESPACE;
function BorDebugSymbolUSING;
function BorDebugSymbolPCONSTANT;
procedure BorDebugSymbolBPREL32;
procedure BorDebugSymbolLDATA32;
procedure BorDebugSymbolGDATA32;
procedure BorDebugSymbolPUB32;
procedure BorDebugSymbolLPROC32;
function BorDebugSymbolGPROC32;
procedure BorDebugSymbolTHUNK32;
procedure BorDebugSymbolBLOCK32;
procedure BorDebugSymbolWITH32;
procedure BorDebugSymbolLABEL32;
procedure BorDebugSymbolENTRY32;
function BorDebugSymbolOPTVAR32;
procedure BorDebugSymbolPROCRET32;
procedure BorDebugSymbolSAVREGS32;
function BorDebugSymbolSLINK32;
// General routines 2:
procedure BorDebugSrcModule;
procedure BorDebugSrcModuleRanges;
procedure BorDebugSrcModuleSources;
procedure BorDebugSrcModuleSourceRanges;
procedure BorDebugSrcModuleLineNumbers;
procedure BorDebugGlobalSym;
procedure BorDebugGlobalTypes;
procedure BorDebugTypeFromIndex;
procedure BorDebugTypeFromOffset;
// TypeXXX routines:
procedure BorDebugTypeMODIFIER;
procedure BorDebugTypePOINTER;

procedure BorDebugTypeARRAY;
procedure BorDebugTypeCLASS;
procedure BorDebugTypeUNION;
procedure BorDebugTypeENUM;
procedure BorDebugTypePROCEDURE;
procedure BorDebugTypeMFUNCTION;
function BorDebugTypeVTSHAPE;
function BorDebugTypeLABEL;
procedure BorDebugTypeSET;
procedure BorDebugTypeSUBRANGE;
procedure BorDebugTypePARRAY;
procedure BorDebugTypePSTRING;
procedure BorDebugTypeCLOSURE;
procedure BorDebugTypePROPERTY;
function BorDebugTypeLSTRING;
function BorDebugTypeVARIANT;
procedure BorDebugTypeCLASSREF;
function BorDebugTypeWSTRING;
function BorDebugTypeARGLIST;
procedure BorDebugTypeStartFIELDLIST;
procedure BorDebugTypeNextFIELDLIST;
function BorDebugTypeDERIVED;
procedure BorDebugTypeBITFIELD;
function BorDebugTypeMETHODLIST;
procedure BorDebugTypeBCLASS;
procedure BorDebugTypeVBCLASS;
procedure BorDebugTypeIVBCLASS;
procedure BorDebugTypeENUMERATE;
procedure BorDebugTypeFRIENDFCN;
function BorDebugTypeINDEX;
procedure BorDebugTypeMEMBER;
procedure BorDebugTypeSTMEMBER;
procedure BorDebugTypeMETHOD;
procedure BorDebugTypeNESTTYPE;
procedure BorDebugTypeVFUNCTAB;
function BorDebugTypeFRIENDCLS;
function BorDebugTypeCHAR;
function BorDebugTypeSHORT;
function BorDebugTypeUSHORT;
function BorDebugTypeLONG;
function BorDebugTypeULONG;
function BorDebugTypeREAL32;
function BorDebugTypeREAL64;
function BorDebugTypeREAL80;
function BorDebugTypeQUADWORD;
function BorDebugTypeUQUADWORD;
function BorDebugTypeREAL48;
// Name and type string routines
function BorDebugNamesTotalNames;
procedure BorDebugNameIndexToUnmangledName;
procedure BorDebugNameIndexToName;
procedure BorDebugRegIndexToName;
procedure BorDebugTypeIndexToString;
function BorDebugUnmangle;

➤ Listing 1

34 The Delphi Magazine Issue 63

the information, what it is, and how
to typically use it.

The routines can be grouped
broadly into four categories. There
are a number of general routines to
open and close the debug informa-
tion, iterate through the contents
and so on. Then there are the
BorDebugSymbolXXX routines that
decode each specific kind of
symbol you might encounter. The
BorDebugTypeXXX decodes the dif-
ferent kind of type information
available in the debug information.
And finally you have a group of rou-
tines used to iterate through and
look up string representations of
symbol and type indices.

In addition to the constants and
routine imports translated from
the C header file, I’ve also added a
number of types and constants to
make the interface more
self-describing and to improve
type safety. The BorDebug unit also
defines some extra helper routines
when BORDEB_EXTRAS is defined
(which it is by default). BorDebug-
RegisterFileEx wraps the native
BorDebugRegisterFile call and
raises an exception if an error
occurs. It also optionally tries to
open a .TDS file if the debug info
cannot be found in the executable

itself. Three CrackXXX routines help
you interpret packed C bit fields.

There is also a conditional define
called DYNLINK_BORDEBUG. This is off
by default, which means that
BorDebug.DLL will be implicitly
linked to in the usual manner. If the
OS cannot find the DLL (in the
application directory or in the
path), the program will not load. By
enabling this define, the routines
are linked to dynamically at
runtime (by calling LoadLibarary
and GetProcAddress). This means
that your application will still load
even if the DLL cannot be found on
the system. This may be useful if it
does not totally depend on reading
debug information (it could have
other functionality as well). The
magic that makes this possible is
defined in the HVDll unit,
presented in Issue 4314.

Start Digging
Let’s get our hands dirty and write
a little example program that uses
the BorDebug API. The small pro-
gram in Listing 2 takes the filename
given on the command line and
dumps all the debug symbols to
standard output.

To keep the size of this sample
down, it just aborts if an error

occurs. The BorDebug API isn’t
very forgiving if you give it invalid
handles or memory pointers.
Access violations can occur easily
if you are not careful.

We first call the BorDebug-
RegisterFile function to open the
file given on the command line. If it
succeeds in locating the TD32 info,
it returns a valid handle that we
use in all subsequent BorDebug
calls.

Then we get the total number of
names in the global symbol name
section using the BorDebugNames-
TotalNames routine. The indices
used by the name routines are
1-based, so we loop from 1 to
NameCount, getting each name
string using the BorDebugName-
IndexToName routine, writing each
name to standard output. Finally,
we close the BorDebug handle by
calling BorDebugUnregisterFile.

That wasn’t too hard, was it?
You can see parts of the (very
long) output produced by this
program in Listing 3.

After opening the debug info
with BorDebugRegisterFile, you
can get the number of available
sub-sections by calling BorDebug-
SubSectionCount. Then you can
iterate through these sub-
sections, calling BorDebugSub-
Section for each index. The
retrieved subsections each have a
subsection type, offset and size.
The subsection types will be one of
the eight listed in Table 1.

We can enhance our simple con-
sole application to perform these
steps, writing information about
all the subsections available, and
some extra information about the
modules and the source modules
and counting the number of sym-
bols in each symbol section, see
the BDSecInf program in Listing 4.

This is starting to get a little
more involved. Let’s go through
the code.

A module subsection
(BORDEBUG_SSTMODULE) doesn’t have
much extra information associ-
ated with it, so we just retrieve its
name index (with BorDebugModule)
and look up the string for that
index (with BorDebugNameIndexTo-
Name). We dump out this name and
the segment count.

program BDDmpNam;
{$APPTYPE CONSOLE}
uses
BorDebug;

var
Handle: TBorDebHandle;
NameBuf: array[0..1024] of char;
NameCount : integer;
i: integer;
BorDebError: TBorDebError;

begin
Handle := BorDebugRegisterFile(PChar(ParamStr(1)), false, true, BorDebError);
if BorDebError <> deOk then
Halt;

NameCount := BorDebugNamesTotalNames(Handle);
writeln('Total names: ', NameCount);
for i := 1 to NameCount do begin // Note: Name index is 1-based!
BorDebugNameIndexToName(Handle, i, NameBuf, SizeOf(NameBuf));
Writeln(i, ' = ', NameBuf);

end;
BorDebugUnregisterFile(Handle);

end.

Total names: 10820
1 = System
2 = SysInit
3 = Windows
4 = BorDebug
5 = BDDmpNam
6 = @System@CloseHandle
7 = @System@CreateFileA
...
10815 = @Bddmpnam@TCrackedClassMemberAttrib
10816 = ClassMemberProtection
10817 = ClassMemberProperty
10818 = TClassMemberAttribs
10819 = TVtabOffset
10820 = TVtabOffsets

➤ Above: Listing 2 ➤ Below: Listing 3

36 The Delphi Magazine Issue 63

A source module (BORDEBUG_
SSTSRCMODULE) has much more
information available. For our pur-
poses, we are just interested in the
names of the source files that make
up the source module. We first get
the number of source files and
ranges using the BorDebugSrcModule
call. Ignoring the RangeCount for
now, we then dynamically allocate
three arrays to hold the offset,
name index and range count for
each source file. Then we get
BorDebug to fill in information into
our arrays by calling the BorDebug-
SrcModuleSources API. At this point
we don’t really care about the off-
sets and ranges, so we just free
them again. Now that we have an
array of the name indices for the
source files, we can just loop and
write each name out (again calling
BorDebugNameIndexToName to con-
vert each name index into a string).
We must remember to free the
array of name indices.

Finally, for the symbol sections,
we just iterate over all the symbols

using the BorDebugStartSymbols
and BorDebugNextSymbol routines.
This gives us the kind of symbol,
and the offset and size of the
symbol inside the debug informa-
tion. Notice that the end of the
symbol section is detected by
receiving the special value 0 for all
three parameters. To keep the size
of the output down, we don’t write
anything for each symbol, but just
update a global counter and write
the total count for each symbol
section.

Phew! As you can see we have to
write a fair amount of code just to
do some simple dumping of basic
information. This API just screams
to be wrapped in a set of classes.
And we will do that. However, I
think it is better to first use the raw
API in order to learn properly how
it works and how we can best
design our classes later.

Let’s see if we can gain some
more understanding by studying
the output from this program.
Listing 5 is an abbreviated version

of what it produces when it’s run
on itself.

We can see that all the module
sub-sections come first. Each sub-
section one has a sequential
module index, starting with 1. A
module index of 0 means that the
sub-section is not associated with
a specific module, this applies to
the Global Types and the Names
sub-sections at the bottom of the
listing.

Furthermore, the offsets of each
sub-section refer to the offset from
the beginning of the .EXE file,
where the debug information for
that sub-section can be found.
Likewise, the sub-section size is
the size of the debug information.
Note that all Module subsections
have a segment count of 3. We’ll
come back to this.

The program was compiled with
the debug version of the RTL units.
So the first source module is the
one for System.Pas. Note that the

program BDSecInf;
{$APPTYPE CONSOLE}
uses
BorDebug, SysUtils, HVBorDebug;

var
Handle : TBorDebHandle;
BorDebError : TBorDebError;
SubSectionCount: integer;
SubSectionIndex: integer;
SubsectionType : TSubsectionType;
Module : TModuleIndex;
Offset : TFileOffset;
Size : TByteCount;
Overlay : TOverlayIndex;
LibIndex : TLibraryIndex;
Style : TDebuggingStyle;
NameIndex : TNameIndex;
TimeStamp : TBDTimeStamp;
SegmentCount : TItemCount;
Name : array[0..260] of char;
RangeCount : TItemCount;
SourceCount : TItemCount;
SourceOffsets : PFileOffsets;
NameIndices : PNameIndices;
RangeCounts : PItemCounts;
i : integer;
SymbolKind : TSymbolKind;
SymbolOffset : TFileOffset;
SymbolLen : TByteCount;
SymbolCount : integer;

begin
Handle := BorDebugRegisterFile(PChar(ParamStr(1)),
false, true, BorDebError);

if BorDebError <> deOk then
Halt;

SubSectionCount := BorDebugSubSectionCount(Handle);
Writeln('Total subsections: ', SubSectionCount);
// Note: SubSection index is 0-based!
for SubSectionIndex := 0 to SubSectionCount-1 do begin
BorDebugSubSection(Handle, SubSectionIndex,
SubsectionType, Module, Offset, Size);

Writeln(Format('SUBSECTION #%d: %s, Module=%d,
Offset=%.8x, Size=%d', [SubSectionIndex,
SubsectionTypeToString(SubsectionType), Module,
Offset, Size]));

case SubsectionType of
BORDEBUG_SSTMODULE:
begin
BorDebugModule(Handle, Offset, Overlay, LibIndex,
Style, NameIndex, TimeStamp, SegmentCount);

BorDebugNameIndexToName(Handle, NameIndex, @Name,
SizeOf(Name));

Writeln(Format(' %s.DCU, SegmentCount=%d',

[Name, SegmentCount]));
end;

BORDEBUG_SSTSRCMODULE:
begin
BorDebugSrcModule(Handle, Offset, RangeCount,
SourceCount);

// We'll ignore the ranges for now, lets get info
// about the source files. Allocate enough memory
// for each source file array
GetMem(SourceOffsets, SourceCount *
SizeOf(SourceOffsets^[0]));

GetMem(NameIndices , SourceCount *
SizeOf(NameIndices ^[0]));

GetMem(RangeCounts , SourceCount *
SizeOf(RangeCounts ^[0]));

// Now get the source file segment offsets, name
// indices and range counts
BorDebugSrcModuleSources(Handle, Offset,
SourceOffsets, NameIndices, RangeCounts);

// We don't care about the offsets and ranges
// right now, so just free them
FreeMem(SourceOffsets);
FreeMem(RangeCounts);
// Write the names of the files that contribute to
// this unit
for i := 0 to SourceCount-1 do begin
BorDebugNameIndexToName(Handle, NameIndices^[i],
@Name, SizeOf(Name));

Write(' ', Name, ',');
end;
Writeln;
FreeMem(NameIndices);

end;
BORDEBUG_SSTGLOBALSYM, BORDEBUG_SSTGLOBALPUB,
BORDEBUG_SSTALIGNSYM:
begin
SymbolCount := 0;
BorDebugStartSymbols(Handle, SubSectionType,
Offset, Size);

while true do begin
BorDebugNextSymbol(Handle, SymbolKind,
SymbolOffset, SymbolLen);

if (SymbolKind = 0) and (SymbolOffset = 0)
and (SymbolLen = 0) then
Break;

Inc(SymbolCount);
end;
Writeln(' ', SymbolCount, ' symbols');

end;
end;

end;
BorDebugUnregisterFile(Handle);

end.

➤ Listing 4

November 2000 The Delphi Magazine 37

module index for this sub-section
is the same as the module index for
the System.DCU module sub-
section. This tells us that the
source files listed here produced
the System.DCU unit. We can also
see that the System unit actually
consists of one unit source file
(system.pas), one include file
(getmem.inc) and five assembly
files (assign.asm, close.asm,
opentext.asm, writestr.asm and
_ll.asm). There is no mention of the
intermediate .OBJ files produced
by the assembly files: they are all
sucked into the System.DCU file
and no trace of them can be seen in
the debug information.

Next we find an AlignSym sub-
section. This also has a module
index of 1, so it belongs to the
System.DCU module. The AlignSym
sub-section contains all the sym-
bols linked in from the System unit.
In this case we see that we have
1,268 symbols. This number will
vary according to how much of
each unit we use. The smart linker
will remove symbols that are not
referenced and these will not show
up in the debug information either.
We will look at the more detailed
information inside the symbol
sections a little later.

The next source module is for
the SysInit.DCU module (index 2)
and consists of one file, SysInit.pas.
Then follow the symbols for
SysInit. Then there is another
AlignSym sub-section, for module
index 3, which is the Windows.DCU
module. Notice the Windows unit
doesn’t have any source module
defined for it, this is because
there is no debug version of
Windows.DCU in the delphi5\lib\
debug directory. Only units com-
piled with the debug information
($D+) setting checked produce
source module sub-sections in the
EXE’s debug info.

Also note that the browse sec-
tion type is absent, even if the units
were compiled with reference
information included. The last
interesting bit of information
gleaned from this output is that the
main project file is the only one
that has a full path registered. Pre-
sumably, this can help a debugger
locate the project files.

Class: Can I Have Your
Attention, Please?

By now you are probably already
dizzy with all the funny concepts
and strange inter-dependencies:
I know I was when I was writing this
article! Writing more involved
demo programs, or even full-scale
applications, using the raw
BorDebugAPI could quickly become
very tedious indeed. Not to worry, I
have some Delphi classes which
will come to the rescue. Listing 6
shows the public sections of the
classes in the HVBorDebug unit.

There are a number of classes in
this unit, but normally you will
only create the top-level class:
TBorDebug. Then you assign the
Filename property to the file con-
taining the debug information and
set Active to True. Now you can
easily iterate or look up a name
index using the Names array prop-
erty. This class also lets you easily
loop through all subsections and
conditionally create modules,
source modules, symbol info and
type info classes. It will let you iter-
ate though the symbols within a
subsection.

The other classes that support
this main class are TBorDebug-
Module, TBorDebugSrcModule, TMod-
uleSegment, TSourceFileEntry,
TLineNumberOffsets, TSymbolInfo
and TTypeInfo. These classes cor-
respond to the concepts we
discussed above and they shield us

from having to call the BorDebug
API routines directly.

Records Versus Classes
During the design of the TBorDebug
classes, several times I had to con-
sider when to use classes and
when to use plain old records.
Classes are a higher-level con-
struct that allows you to add intel-
ligence and collaboration, the
drawback is that you have to
explicitly create and free them.
Records can live in the stack and
need no lifetime management, but
are dumber. Using old-style
objects might have been a good
middle way, but they are not
officially supported, and I don’t
recommend using them.

I ended up using classes for the
higher-level concepts that own
other items and thus simplify tasks
by making them somewhat intelli-
gent. When the burden of continu-
ally creating and destroying the
items overweighed the potential
benefit of using classes, I stuck to
plain records.

You will also see in the
HVBorDebug unit on disk, that I have
added a large number of record
types. These are used to hold the
output parameters of the
BorDebugSymbolXXX and BorDebug-
TypeXXX routines. It is simpler to
have them as records, because I

Total subsections: 38
SUBSECTION #0: MODULE, Module=1, Offset=00010828, Size=64
System.DCU, SegmentCount=3

SUBSECTION #1: MODULE, Module=2, Offset=00010868, Size=64
SysInit.DCU, SegmentCount=3

SUBSECTION #2: MODULE, Module=3, Offset=000108A8, Size=64
Windows.DCU, SegmentCount=3

(...more...)
SUBSECTION #11: MODULE, Module=12, Offset=00010AE8, Size=64
HVBorDebug.DCU, SegmentCount=3

SUBSECTION #12: MODULE, Module=13, Offset=00010B28, Size=64
BDSecInf.DCU, SegmentCount=3

SUBSECTION #13: SRCMODULE, Module=1, Offset=00010B68, Size=23426
system.pas, GETMEM.INC, assign.asm, close.asm, opentext.asm,
writestr.asm, _ll.asm,

SUBSECTION #14: ALIGNSYM, Module=1, Offset=000166EA, Size=28644
1268 symbols

SUBSECTION #15: SRCMODULE, Module=2, Offset=0001D6CE, Size=388
SysInit.pas,

SUBSECTION #16: ALIGNSYM, Module=2, Offset=0001D852, Size=1038
44 symbols

SUBSECTION #17: ALIGNSYM, Module=3, Offset=0001DC60, Size=162350
7707 symbols

(...more...)
SUBSECTION #32: SRCMODULE, Module=12, Offset=0005CAC6, Size=130
HVBorDebug.pas,

SUBSECTION #33: ALIGNSYM, Module=12, Offset=0005CB48, Size=3888
207 symbols

SUBSECTION #34: SRCMODULE, Module=13, Offset=0005DA78, Size=262
D:\DelMag\BorDebug\Demos\BDSecInf.dpr,

SUBSECTION #35: ALIGNSYM, Module=13, Offset=0005DB7E, Size=966
39 symbols

SUBSECTION #36: GLOBALTYPES, Module=0, Offset=0005DF44, Size=327976
SUBSECTION #37: NAMES, Module=0, Offset=000AE06C, Size=373882

➤ Listing 5

38 The Delphi Magazine Issue 63

unit HVBorDebug;
{ Simplified class interface for the BorDebug API

Written by Hallvard Vassbotn (hallvard.vassbotn@c2i.net)
April 1999 - September 2000 }

interface
uses
Windows, Classes, TypInfo, BorDebug, SysUtils;

type
// ... removed a lot of stuff -- see the code on disk
TBorDebug = class(TObject)
public
constructor Create(const aFilename: string = '');
destructor Destroy; override;
procedure Open;
procedure Close;
property Handle: TBorDebHandle read GetHandle;
property FileName: string;
property SkipNames: boolean;
property CacheNames: boolean;
property Active: boolean;
property NameCount: TItemCount;
property Names[Index: TNameIndex]: string;
property UnmangledNames[Index: TNameIndex]: string;
property RegisterName[RegIndex: TRegNameIndex]: string;
property SubSectionCount: TItemCount;
property SubSections[Index: TSubSectionIndex]:
TBorDebugSubSection;

function CreateModule(const SubSection:
TBorDebugSubSection): TBorDebugModule;

function CreateSrcModule(const SubSection:
TBorDebugSubSection): TBorDebugSrcModule;

procedure StartSymbols(const SubSection:
TBorDebugSubSection);

function GetNextSymbol(var Symbol: TBorDebugSymbol):
boolean;

function CreateSymbolInfo(const Symbol:
TBorDebugSymbol): TSymbolInfo;

function CreateTypeInfo(const aType: TBorDebugType):
TTypeInfo;

property TypeFromIndex[TypeIndex: TTypeIndex]:
TBorDebugType;

property TypeFromOffset[Offset: TFileOffset]:
TBorDebugType;

property TypeName[TypeIndex: TTypeIndex]: string;
property GlobalSymbols[const SubSection:
TBorDebugSubSection]: TBorDebugGlobalSymbol;

property TypeCount: TItemCount;
property TypesSignature: TSignature;
property SubSectionDirectoryOffset: TFileOffset;

end;
TBorDebugModule = class(TBorDebugObject)
public
constructor Create(BorDebug: TBorDebug; Offset:
TFileOffset);

destructor Destroy; override;
property Overlay : TOverlayIndex ;
property LibIndex : TLibraryIndex ;
property Style : TDebuggingStyle;
property TimeStamp : TBDTimeStamp ;
property SegmentCount : TItemCount ;
property NameIndex : TNameIndex ;
property Name : string ;
property ModuleSegmentList : TList ;
property Segments[Index: integer]: TModuleSegment;

end;
TBorDebugSrcModule = class(TBorDebugObject)
public
constructor Create(BorDebug: TBorDebug; Offset:
TFileOffset);

destructor Destroy; override;
property RangeCount : TItemCount ;
property RangeSegments : PSegmentIndices;
property RangeSegmentStarts : PSegmentOffsets;
property RangeSegmentEnds : PSegmentOffsets;
property SourceCount : TItemCount ;
property SourceOffsets : PFileOffsets ;
property NameIndices : PNameIndices ;

property RangeCounts : PItemCounts ;
property SourceFileList : TList ;
property SourceFiles[Index: integer]: TSourceFileEntry;
property SourceNames[Index: integer]: string;

end;
TModuleSegment = class(TObject)
public
constructor Create(Module: TBorDebugModule;
SegmentIndex: TSegmentIndex);

property LinkerSegment : TLinkerSegmentIndex;
property Offset : TFileOffset ;
property Size : TByteCount ;
property Flags : TSegmentFlags ;

end;
TSourceFileEntry = class(TObject)
public
constructor Create(SrcModule: TBorDebugSrcModule;
SourceFileIndex: TSourceFileIndex);

destructor Destroy; override;
property BorDebug : TBorDebug ;
property Handle : TBorDebHandle ;
property Offset : TFileOffset ;
property SrcModule : TBorDebugSrcModule;
property Name : string ;
property NameIndex : TNameIndex ;
property SourceFileIndex : TSourceFileIndex;
property RangeSegments : PSegmentIndices ;
property RangeSegmentStarts : PSegmentOffsets ;
property RangeSegmentEnds : PSegmentOffsets ;
property LineNumberCounts : PItemCounts ;
property LineNumerOffsetList: TList ;
property RangeCount : TItemCount ;
property RangeLineNumbers[Index: integer]:
TLineNumberOffsets;

end;
TLineNumberOffsets = class(TObject)
public
constructor Create(SourceFile: TSourceFileEntry;
RangeIndex: TRangeIndex);

destructor Destroy; override;
property SourceFile : TSourceFileEntry;
property LineNumbers : PLineNumbers ;
property LineOffsets : PSegmentOffsets ;
property LineCount : TItemCount ;
property RangeIndex : TRangeIndex ;

end;
TSymbolInfo = class(TObject)
public
constructor Create(BorDebug: TBorDebug; Symbol:
TBorDebugSymbol);

destructor Destroy; override;
function GetTypeIndex(var TypeIndex: TTypeIndex):
boolean;

function GetNameIndex(var NameIndex: TNameIndex):
boolean;

property Symbol : TBorDebugSymbol;
property SymbolOffset : TFileOffset ;
property Len : TByteCount ;
property Kind : TSymbolKind ;
property Info : TSymbolInfoRec ;
property KindAsString : string ;

end;
TTypeInfo = class(TObject)
public
constructor Create(BorDebug: TBorDebug; aType:
TBorDebugType);

destructor Destroy; override;
property BDType : TBorDebugType ;
property TypeIndex : TTypeIndex ;
property TypeOffset : TFileOffset ;
property Length : TByteCount ;
property TypeKind : TTypeKind ;
property Info : TTypeInfoRec ;
property NameIndex : TNameIndex ;
property KindAsString : string ;

end;

➤ Listing 6

also use them in large variant
records to have single TSymbolInfo
and TTypeInfo classes which can
store the representation of any
symbol or type, respectively.

Simplified Scanning
Even with this level of support, I
found that I still had to write a large
amount of boiler-plate code to
iterate through the subsections,
calling the correct methods to

create secondary classes and so
on. To help with this, I wrote
another class called TCustomBor-
DebugScanner. This class is defined
in the BorDebugScanners unit, see
Listing 7.

As you can see, this class has a
very simple public interface. You
firstly create it, giving it a reference
to the BorDebug instance that
should be used when scanning.
Then you call the Scan method,
indicating what subsections and
information you are interested in

scanning. The TCustomBorDebug-
Scanner class doesn’t do anything
interesting by itself, but it defines a
number of virtual template meth-
ods in the protected section that
descendant classes are supposed
to override.

By inheriting from this class, it is
fairly easy to write code to convert
an address to the corresponding
unit name and line number. The
TLineNumberScanner in the same
unit does this by overriding the
ScanLineNumberOffset method and

November 2000 The Delphi Magazine 39

defining a new public method
called FindUnitnameLinenumber, see
Listing 8.

The FindUnitnameLinenumber
function first saves the Address
parameter in a field so that the
ScanLineNumberOffset method can
see the value. Then it calls the Scan
method, indicating that it is inter-
ested in the source modules and
the files they contain. This ensures
that the ScanLineNumberOffset will
be called for all the source files
found in the debug information.

unit BorDebugScanners;
interface
uses
BorDebug, HVBorDebug;

type
TScanningOption = (soModule, soAlignSym, soSrcModule,
soGlobalSym, soGlobalPub, soGlobalTypes, soNames,
soBrowse, soSrcModuleRanges, soSrcModuleFiles);

TScanningOptions = set of TScanningOption;
TCustomBorDebugScanner = class(TObject)
protected
function WantSymbol(...); virtual;
function WantType(...); virtual;
function WantFieldList(...); virtual;
function WantTypeInfoForSymbol(...); virtual;
procedure StartFieldListScan(...); virtual;
procedure EndFieldListScan(...); virtual;
procedure ScanLineNumberOffset(...); virtual;
procedure ScanSrcModuleSourceRange(...); virtual;
procedure ScanSymbolTypeInfo(...); virtual;

procedure ScanSrcModule(...); virtual;
procedure ScanSrcModuleRange(...); virtual;
procedure ScanSrcModuleSource(...); virtual;
procedure ScanSymbolInfo(...); virtual;
procedure ScanSymbols(...); virtual;
procedure ScanModule(...); virtual;
procedure ScanModuleSegment(...); virtual;
procedure ScanSubSection(...); virtual;
procedure ScanSubsections; virtual;
property CurrentSourceFileEntry: TSourceFileEntry;
property CurrentLineNumberOffsets: TLineNumberOffsets;
property CurrentSubSection: PBorDebugSubSection;
property CurrentModule: TBorDebugModule;
property CurrentSrcModule: TBorDebugSrcModule;
property ScanningOptions: TScanningOptions;

public
constructor Create(ABorDebug: TBorDebug);
procedure Scan(ScanningOptions: TScanningOptions);
property BorDebug: TBorDebug;

end;

➤ Listing 7
Also, all other sub-sections will be
ignored, speeding up the scanning
process. This could probably be
tuned further by ignoring source
modules that have ranges which
fall outside the address. If you need
to look up a large number of
addresses quickly, you probably
want to load the information into
your own custom data structures.

Inside the ScanLineNumberOffset
method we check if the current
address is lower or equal to the
address we’re looking for. If we
don’t find a perfect match, we
select the closest match. When we

find a match, we keep the supplied
line number and unit name infor-
mation (ie, the name of the current
source file entry).

After the Scan call returns, we
check if we found a match, and
return those values. On the disk is
a small demonstration application,
AddrLookup.dpr, which shows
how to use this class: you can see it
running in Figure 4.

Note that the addresses used by
this sample application are offsets
relative to the start of the code seg-
ment. Actual runtime addresses
will be different, so you will have to

40 The Delphi Magazine Issue 63

TLineNumberScanner = class(TCustomBorDebugScanner)
private
FAddress: TSegmentOffset;
FBestMatch: TSegmentOffset;
FUnitname: string;
FLinenumber: TLinenumber;

protected
procedure ScanLineNumberOffset(LineNumber: TLineNumber;
LineOffset: TSegmentOffset); override;

public
function FindUnitnameLinenumber(
Address: TSegmentOffset; out Unitname: string;
out Linenumber: TLinenumber): boolean;

end;
implementation
{ TLineNumberScanner }
procedure TLineNumberScanner.ScanLineNumberOffset(
LineNumber: TLineNumber; LineOffset: TSegmentOffset);

begin

if (LineOffset <= FAddress)
and (LineOffset > FBestMatch) then begin
FBestMatch := LineOffset;
FLinenumber := Linenumber;
FUnitName := CurrentSourceFileEntry.Name;

end;
end;
function TLineNumberScanner.FindUnitnameLinenumber(
Address: TSegmentOffset; out Unitname: string;
out Linenumber: TLinenumber): boolean;

begin
FAddress := Address;
FBestMatch := 0;
Scan([soSrcModule, soSrcModuleFiles]);
Result := (FBestMatch > 0);
if Result then begin
Unitname := FUnitname;
Linenumber := FLinenumber;

end;
end;

convert those into relative offsets
by subtracting the base address of
the executable (typically $0040000
for an .EXE file). In addition you
normally have to subtract $1000
(added by the linker).

The Gigantic Dumper
No article about the TD32 debug
format would be complete without
a generic dumper program. To
write this, I first developed a

re-usable TDumpBorDebugScanner
class. This inherits from TCustom-
BorDebugScanner and overrides just
about every virtual method to
dump all the available debug infor-
mation. The actual dumping is del-
egated to a public OnDump event.
This way we can reuse all that
boring dumping code (650 lines),
and just plug in any media we like
(write it to standard output, dump
it to a TMemo control, or stream it).

program BDDmpAll;
{$APPTYPE CONSOLE}
uses
BorDebug, HVBorDebug, BorDebugScanners,
BorDebugDumpScanner;

type
TDumpToStdOut = class(TObject)
public
procedure OnScannerDump(
Sender: TObject; const Msg: string);

end;
procedure TDumpToStdOut.OnScannerDump(
Sender: TObject; const Msg: string);

begin
Write(Msg);

end;
var
Debug: TBorDebug;
DumpScanner: TDumpBorDebugScanner;

DumpToStdOut: TDumpToStdOut;
begin
Debug := nil;
DumpToStdOut := nil;
DumpScanner := nil;
try
Debug := TBorDebug.Create(ParamStr(1));
DumpToStdOut := TDumpToStdOut.Create;
DumpScanner := TDumpBorDebugScanner.Create(Debug);
DumpScanner.OnDump := DumpToStdOut.OnScannerDump;
DumpScanner.Scan([soModule, soAlignSym,
soSrcModule, soGlobalSym, soGlobalPub,
soGlobalTypes, soNames, soBrowse,
soSrcModuleRanges, soSrcModuleFiles]);

finally
DumpScanner.Free;
DumpToStdOut.Free;
Debug.Free;

end;
end.

➤ Listing 8

➤ Listing 9

I’ve created a little console pro-
gram that uses this class to dump
all the debug information of the file
given on the command line to the
standard output: see the code for
BDDmpAll.Dpr in Listing 9.

Be warned that this program
produces large outputs. When I ran
it on itself, it produced a text file of
about 3.8Mb! No doubt much of
this information is redundant, but
it does give you a hint of just how
much information is in there. Just
for the heck of it, I also wrote a GUI
version: see Listing 10 and Figure
5.

Again, be aware that loading a
file can take quite a few seconds.
Notice the special trick I use to
grow the Dump string. Without this,
the program eats memory like
crazy and takes forever to run. I’m
using a vanilla TMemo in this sample,
because it ran much slower with a
TRichEdit control.

Conclusion
I could continue this article almost
ad infinitum, but I have to put the

➤ Above: Figure 4 ➤ Below: Figure 5

November 2000 The Delphi Magazine 41

procedure TScannerDemoForm.FormCreate(Sender: TObject);
begin
Debug := TBorDebug.Create;
DumpScanner := TDumpBorDebugScanner.Create(Debug);
DumpScanner.OnDump := OnScannerDump;

end;
procedure TScannerDemoForm.FormDestroy(Sender: TObject);
begin
DumpScanner.Free;
Debug.Free;

end;
procedure TScannerDemoForm.OnScannerDump(Sender: TObject;
const Msg: string);

var
NewLength : integer;

begin
// Grow the dump buffer if it is too small
if (Length(Dump) - DumpPos) < Length(Msg) then begin
if Length(Msg) > Length(Dump) then
NewLength := Length(Dump) + Length(Msg)

else
NewLength := Length(Dump) * 2;

SetLength(Dump, NewLength);
end;
// Just move the content quickly
// over to the dump buffer

Move(Pointer(Msg)^, Pointer(@Dump[DumpPos+1])^,
Length(Msg));

// Update our position in the dump buffer
Inc(DumpPos, Length(Msg));

end;
procedure TScannerDemoForm.ScanIt;
begin
SetLength(Dump, 4*1024*1024); // 4Meg!
DumpPos := 0;
DumpScanner.Scan([soModule, soAlignSym,
soSrcModule, soGlobalSym, soGlobalPub,
soGlobalTypes, soNames, soBrowse,
soSrcModuleRanges, soSrcModuleFiles]);

SetLength(Dump, DumpPos);
Memo.Lines.Text := Dump;
Dump := '';

end;
procedure TScannerDemoForm.OpenItemClick(Sender: TObject);
begin
if OpenDialog.Execute then begin
Debug.Filename := OpenDialog.Filename;
Debug.Open;
ScanIt;
Debug.Close;

end;
end;

➤ Listing 10

References

1. Borland Turbo Debugger, a free download:
www.borland.com/bcppbuilder/turbodebugger/

2. Numega BoundsChecker for Delphi:
www.numega.com/products/aed/del.shtml

3. Turbo Power Sleuth QA Suite:
www.turbopower.com/products/sleuthqa/

4. Atanas Stoyanov’s MemProof home page:
www.totalqa.com/downloads/ memproof.asp

5. AutomatedQA QTime:
www.totalqa.com/index.asp

6. Intel VTune: http://developer.intel.com/vtune/

7. Wotsit’s Format – The programmer’s reference: www.wotsit.org/

8. Stefan Hoffmeister: www.econos.de/index.html

9. Hallvard Vassbotn, TDM Issue 50, October 1999, Exceptional Stack Tracing

10. John Thomas, Borland Debug Hook Library and Header File:
http://ww6.borland.com/codecentral/ccweb.exe/listing?id=14513

11. Unfortunately, TDStrp32.EXE is not included with Delphi, nor the free
BC++ compiler: www.borland.com/bcppbuilder/freecompiler/

12. Borland’s Turbo Assembler 5.0:
http://shop.borland.com/Product/ 0,1057,3-15-CQ100146,00.html

13. Hallvard Vassbotn, TDM Issue 38, November 1998, Slimming The Fat
Off Your Apps

14. Hallvard Vassbotn, TDM Issue 43, March 1999, DelayLoading of DLLs

limit somewhere. Now I have given
you a Pascal wrapper around the
BorDebug.DLL, a set of wrapper
classes, a simplified scanner tem-
plate class, a couple of
descendants that do some real
work, plus examples of how to use
it all too.

Possible usability extensions
would be to write a non-visual com-
ponent that has events for all the
virtual scanning methods. More
interesting would be to find appli-
cations for the debug information
itself.

One possible candidate is the
‘old’ Exceptional Stack Tracer
code, presented back in Issue 50.
Currently, Vitaly’s RTLI code uses
information from the .MAP file. It
could be extended to take the infor-
mation from the TD32 info, either
at design-time to re-pack it, or
directly at runtime. Another inter-
esting project would be to write a
custom Win32 symbolic debugger
or runtime inspector. Or maybe
take up the competition with
QTime and Sleuth QA and write
your own profiler? The world is
now very much your oyster!

Hallvard Vassbotn is a Senior
Systems Developer at Infront AS
(visit www.theonlinetrader.com),
where he develops systems for
distributing real-time financial
information over the internet.
You can reach him at
hallvard.vassbotn@c2i.net

	History
	Project settings
	Files
	BorDebug Concepts
	Gigantic Structure
	SubSections
	Subsection Types
	Modules
	Segments
	Source Modules
	Source Module Ranges
	Source Files
	Source File Ranges
	Line Numbers
	Symbols
	Types
	Names
	Browse information
	The Raw BorDebug API
	Start Digging
	Class: Can I Have Your Attention, Please?
	Records Versus Classes
	Simplified Scanning
	The Gigantic Dumper
	Conclusion
	References

